Morphology and phylogeny of *Phaeoseptum mali* sp. nov. (Phaeoseptaceae, Pleosporales) on bark of *Malus halliana*

Phukhamsakda C¹, Jeewon R², McKenzie EHC³, Xu JC⁴

¹Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
²Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
³Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand
⁴Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China

Abstract

A novel species, *Phaeoseptum mali* is described based on its distinct morphs and phylogenetic relationships among members of Phaeoseptaceae (Pleosporales). *Phaeoseptum mali* can be distinguished from other species of *Phaeoseptum* by its ascomata, asci and ascospore characters. A detailed illustration and a description of *P. mali* are provided. Phylogenetic analyses of a combined LSU, ITS, SSU, *tef1*, and *rpb2* sequence dataset confirmed its placement within Phaeoseptaceae and its relationships to *P. aquaticum* and *P. terricola*.

Key words – 1 new species – China – Dicotyledon – Dothideomycetes – Fungus

Introduction

Among the Dothideomycetes (bitunicate ascomycetes), Pleosporales is one of the most diverse orders with many new species recently described incorporating DNA sequence data (Kodsueb et al. 2006, Pinnoi et al. 2007, Zhang et al. 2008, 2009, Wanasinghe et al. 2017a, b, 2018, Wijayawardene et al. 2017, 2018, Hyde et al. 2018). Molecular dating has also been used to clarify evolutionary relationships across these bitunicates (Liu et al. 2017).

The family Phaeoseptaceae was established by Hyde et al. (2018), and contains two accepted genera, *Lignosphaeria* and *Phaeoseptum* (with *P. aquaticum* as the generic type). Putative strains of *Decaisnella formosa* (BCC 25616 and BCC 25617), *Neolophiostoma pigmentatum* (MFLUCC 10–0129), and *Thyridaria macrostomoides* (GKM 1033 and GKM 1159), have also been reported to belong to this family (Ariyawansa et al. 2015, Phukhamsakda et al. 2016, Liu et al. 2017, Hyde et al. 2018). Species of Phaeoseptaceae commonly occur on decaying wood in both terrestrial and aquatic habitats. *Phaeoseptum* was introduced based on collections from a woody substrate submerged in a freshwater ecosystem. According to Zhang et al. (2013), the characteristics of the genus include immersed ascomata, narrowly cellular pseudoparaphyses, cylindrical to broadly clavate asci, and dictyosporous, pale brown ascospores with thickened septa.

In this study, we provide an update on the phylogeny of the Phaeoseptaceae and describe a novel species of *Phaeoseptum* from *Malus halliana* collected in China. The phylogeny is based on a multi-gene dataset.
Materials & Methods

Sample collection, morphological study, and isolation

Fresh specimens of the bark of *Malus halliana* Koehne were collected from southern part of China, in the botanical garden of Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China. The specimens were packed into paper bags and transported to the laboratory. Pure cultures were obtained from single ascospores on malt extract agar (MEA; 62 g/l) in distilled water following the method of Chomnunti et al. (2014). Cultures were incubated at 25 °C for one month under standard light cycles of 12 hrs light/12 hrs dark (Liu et al. 2010). The type specimen is deposited in Mae Fah Luang University (MFLU) herbarium. The ex-type living culture is deposited in the Mae Fah Luang Culture Collection (MFLUCC). Faces of fungi number (Jayasiri et al. 2015) and Index Fungorum number (www.indexfungorum.org) are provided. Samples were examined using a Nikon ECLIPSE 80i compound microscope and photographed with a Canon 600D digital camera fitted to the microscope. Measurements were made using Tarosoft (R) Image Frame Work programme and photo-plates were made by using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, United States).

DNA extraction, PCR amplification and sequencing

DNA was extracted from mycelium by using Biospin Fungus Genomic DNA Extraction Kit (BioFlux) (Hangzhou, P.R. China) and gene extraction kit (Bio Basic, Canada). PCR amplification was carried out using primers LROR/LR5 for the nuclear ribosomal large subunit 28S rDNA gene (LSU), NS1/NS4 for the nuclear ribosomal small subunit 18S rDNA gene (SSU) and ITS5/ITS4 for internal transcribed spacer rDNA region and covered 5.8S ribosomal part (ITS1, 5.8S rDNA and ITS2); partial fragments of the translation elongation factor 1-alpha (*tef1*) gene region was amplified using primers EF1-983F and EF1-2218R; and partial RNA polymerase subunit II (*rpb2*) was amplified with primers RP2-5f and RP2-7cr (Vilgalys & Hester 1990, White et al. 1990, Carbone & Kohn 1999, Sung et al. 2007). Primer sequences are available at the WASABI database at the AFTOL website (aftol.org). Amplification conditions followed Phukhamsakda et al. (2016). Purified PCR products were sequenced with primers mentioned above by Shanghai Sangon Biological Engineering Technology & Services Co. (Shanghai, P.R. China).

Sequence alignment and phylogenetic analyses

The consensus sequences of the novel species were generated in Geneious (version 7.1.9 created by Biomatters, available from www.geneious.com). Similar sequences were retrieved using BLAST searches in GenBank (www.ncbi.nlm.nih.gov) and also from Ariyawansa et al. (2015), Phukhamsakda et al. (2016), Hyde et al. (2017), and these are listed in the accession table in Appendix 1. Sequences were aligned with MAFFT version 7.220 (Katoh & Standley 2013) online sequence alignment tools (mafft.cbrc.jp/alignment/server), with minimal adjustments of the ambiguous nucleotides by visual examination and manually corrected in AliView programme (Larsson 2014). Leading or trailing gaps exceeding from primer binding site were trimmed from the alignments prior to tree building and alignment gaps were treated as missing data. The concatenation of the multigene alignment was created in MEGA 6 (Tamura et al. 2013).

A maximum likelihood analysis including 1,000 bootstrap replicates was performed at CIPRES using RAxML version 8.2.10 as part of the “RAxML-HPC2 on XSEDE” tool (Stamatakis 2006, Stamatakis et al. 2008, Miller et al. 2010). The general time reversible model (GTR) using proportions of invariable sites were applied with a discrete gamma distribution and four rate classes model were applied for nucleotide substitution. The best scoring tree was selected with a final likelihood value of -29062.646359. Maximum likelihood bootstrap support (MLBS) equal or greater than 70% are given near to each node (Fig. 1).

The majority rule consensus tree (MRC) from the Bayesian-inference analysis based on combined dataset of LSU, SSU, ITS, *tef1*, and *rpb2* sequence data was performed by using MrBayes on XSEDE version 3.2.6 (Ronquist et al. 2012). The model of evolution was inferred
using jModeltest 2.1.7 (Guindon & Gascuel 2003, Darriba et al. 2012). In our analysis, GTR+I+G model was used for each partition. The Bayesian inference posterior probabilities (PP) distribution (Zhaxybayeva & Gogarten 2002) was estimated by Markov Chain Monte Carlo sampling (MCMC). Six simultaneous Markov chains were run for 1,000,000 generations and trees were sampled every 100th generation, thus 1,000 trees were obtained. The suitable burn-in phases were determined by traces inspected in Tracer version 1.6 (Rambaut et al. 2014). Based on the tracer analysis, the first 200 trees representing 20% of burn-in phase of the analyses were discarded while the remaining trees were used for calculating posterior probabilities in the majority rule consensus tree (critical value for the topological convergence diagnostic set to 0.01).

Phylogenetic trees and data files were visualized in FigTree v. 1.4 (Rambaut & Drummond 2008). The phylogram with bootstrap values and/or posterior probabilities on the branches are presented in Fig. 1 by using graphical options available in Adobe Illustrator CS v. 6. All sequences generated in this study were submitted to GenBank (Appendix 1). The finalized alignment and tree were deposited in TreeBASE, submission ID: 24111 (http://www.treebase.org/). Maximum likelihood bootstrap values equal to or greater than 70% with Bayesian posterior probabilities (PP) equal or greater than 0.90 are presented below or above each node (Fig. 1).

Results

Phylogenetic analyses

The phylogeny based on a combined LSU, ITS, SSU, tef1, and rpb2 sequence data included 38 taxa representing Phaeoseptaceae and closely related families in Pleosporales. The dataset comprised a total of 4693 characters (965 characters for LSU, 617 characters for ITS, 1097 characters for SSU, 926 characters for tef1, 1061 characters for rpb2). Aigialus grandis (BCC 2000) and Neoastrosphaeriella krabiensis (MFLUCC 11−0025), from Aigialaceae, were used as the out group. The matrix has 2061 distinct alignment patterns, with 43.3% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.245073, C = 0.249429, G = 0.276047, T = 0.229452; substitution rates AC = 1.232711, AG = 2.440857, AT = 1.291268, CG = 1.269789, CT = 6.315893, GT = 1.000000; gamma distribution shape parameter α = 0.766883. A best scoring phylogram from maximum likelihood analysis showed similar topologies with the 50% majority rule consensus tree (MRC) from Bayesian-inference analysis. A best scoring RAxML tree resulted with the value of likelihood: -29062.646359 (Fig. 1). Single gene phylogenetic analyses were also performed to compare tree topologies and clade stability with trees generated with the combined gene dataset. Phylogenies from individual genes were congruent with those obtained from the combined dataset (results not shown).

The new strain of Phaeoseptum clusters with the two other known species of Phaeoseptum (Fig. 1). The species is basal to P. aquaticum CBS 123113 and P. terricola MFLUCC 10−0102 and all three Phaeoseptum species constitute a strongly supported monophyletic clade (100% in MLBT, 1.00 BSPP).

Taxonomy

Phaeoseptum mali Phukhams. & K.D. Hyde, sp. nov.

Index Fungorum number: IF556265; Facesoffungi number: FoF05982

Etymology – the epithet “mali” referring to host substrate, *Malus halliana*

Holotype – MFLU 19−0406

Saprobic on dead stems of *Malus halliana* Koehne. Sexual morph *Ascomata* 320−375 × 320−360 μm (x̅ = 348 × 327 μm, n = 5), on surface of the host, visible as black spots or having a convex surface, sometime covered with a pseudoclypeus, immersed, solitary, scattered, globose, dark brown hyphae radiating outwards from the peridium wall, coriaceous, black to dark brown, rough-walled, papillate, with an apical ostiole. *Ostiole* central, dark brown to black, papillate, opened pore, ostiolate with periphyses. *Peridium* 5−19(−25 at apex) μm wide diam., multilayer, outer layer
Fig. 1–Phylogram of 50% majority rule consensus tree from the Bayesian-inference analysis based on combined dataset of LSU, ITS, SSU, tef1, and rpb2 sequence data representing Phaeoseptaceae and closely related families in Pleosporales. The tree is rooted with Aigialus grandis (BC 20000) and Neoastrosphaeriella kraiensis (MFLUCC 11–0025) in Aigialaceae (Pleosporales). Bootstrap support values for maximum likelihood analysis greater than 70% and clade credibility values greater than 0.90 (the rounding of values to 2 decimal proportions) from Bayesian-inference analysis are labelled below or above the nodes. Ex-type strains are in bold and black, the new isolate is indicated in blue.
Fig. 2 – *Phaeoseptum mali* (MFLU 19–0406, holotype). a–c Appearance of ascomata on *Malus halliana*. d Vertical section through ascoma. e Ostiole canal. f Section of partial peridium layer. g Trabeculate pseudoparaphyses. h–j Developmental stages of asci. k–o Ascospores. p Germinated ascospore. q, r Culture on MEA. Scale bars: b = 500 µm, c, d = 200 µm, e, g, h = 50 µm, f, k–p = 20 µm, i, j = 100 µm, q, r = 3 cm.
composed of 8–11 layers of dark brown to light brown, somewhat flattened cells of *textura angularis*, the inner layer comprising thin, hyaline cells. *Hamathecium* of dense, 0.9–1.7 μm wide (\(\bar{x} = 1.4 \mu m, n = 50\)), filiform branches, anastomosing above asci, trabeculate pseudoparaphyses. *Asci* 85–190 × 19–32 μm (\(\bar{x} = 140 \times 25 \mu m, n = 30\)), 8-spored, bitunicate, fisitunicate, cylindrical-clavate to elongate-clavate, apically rounded, ocular chamber clearly visible when immature. *Ascospores* 27–38 × 8–13 μm (\(\bar{x} = 33 \times 10 \mu m, n = 70\)), biseriate, muriform, allantoid, asymmetrical, partial overlapping, broad cylindrical, tapering towards the ends, round at both ends, with 11–14 transverse septa, and 1(–2) longitudinal septum in each cell, initially hyaline, becoming yellowish to brown at maturity, constricted at the median septum, cell above median septum slightly wider than below, rough-walled with verruculose surface, without mucilaginous sheath. Asexual morph Undetermined.

Culture characters – Colonies on MEA reaching 50 mm diam. after four weeks of incubation at 25 °C, from above dark brown radiating outwards, wrinkled folded at the middle, dense, circulate in shape, flattened, unombonate, entire edge, fairly fluffy; reverse black at the middle and dark brown at the edges, orange pigment diffusing into the agar.

Material examined – China, Yunnan Province, Kunming city, in the botanical garden of Kunming Institute of Botany, on decay twigs of *Malus halliana* Koehne (Rosaceae), 21 March 2016, C. Phukhamsakda, CPCN09 (MFLU 19–0406, holotype), isotype in HKAS, ex-type living culture, MFLUCC 17–2108.

Key to the species of Phaeoseptum

1. Ascospores 19–25 × 5–7 μm, cylindrical, without a median septum …………………..*P. terricola*
1. Ascospores with a median septum ……………………………………………………………2
2. Ascospores 30–38 × 9–12 μm, broadly fusoid with rounded ends …………………..*P. aquaticum*
2. Ascospores 27–38 × 8–13 μm, broadly cylindrical with rounded ends …………………..*P. mali*

Discussion

Malus halliana or hall crab apple is considered as a native tree of China and is widely distributed throughout Yunnan Province. Wild and cultivated *M. halliana* commonly occurs in shrubland forests and some basin areas (Zhang et al. 1993, Liu & Tang 2004). It is also a major ornamental tree in Yunnan Province, where it grows in woodland garden with a dappled shade of sunlight (Rhodes & Maxted 2016). At least 20 genera and 40 species of pleosporalean fungi have been recorded from *Malus* spp. (Farr & Rossman 2019, Index Fungorum 2019) but interestingly only three fungi have been recorded on *M. halliana*; these are *Alternaria brassicicola* (Pleosporaceae), *Magnibotryascoma mali* (Teichosporaceae) and *Paucispora kunmingense* (Lophiostomataceae) (Gu 2009, Hyde et al. 2017).

Species of Phaeoseptaceae live on woody substrates in various ecosystems. The family was introduced by Hyde et al. (2018), typified by *Phaeoseptum* with the type species *P. aquaticum* Zhang, J. Fourn. & K.D. Hyde. Recent studies on the family have included *Decaisnella* (D. Formosa), *Lignosphaeria* (*L. fusispora* and *L. thailandica*), *Neolophiostoma* (*N. pigmentatum*), *Phaeoseptum* (*P. aquaticum* and *P. terricola*), and *Thyridaria* (*T. macrostomoides*) (Abdel-Wahab & Jones 2003, Zhang et al. 2013, Ariyawansa et al. 2015, Thambugala et al. 2015, Phukhamsakda et al. 2016, Hyde et al. 2018). Initially, *Phaeoseptum* was reported to belong to the Halothiaceae based on morphological characters and phylogenetic analysis of LSU sequence data (Zhang et al. 2013). With the discovery of more fungal taxa, the genus was later reported to constitute a monophyletic clade in Phaeoseptaceae (Hyde et al. 2018).

In this study, we introduce *P. mali* isolated from bark of fallen twigs of *Malus halliana*. The species is assigned to *Phaeoseptum* based on its unique morphological features such as globose and immersed ascomata, anastomosing pseudoparaphyses, cylindrical-clavate, pedicellate asci, allantoid and brown muriform ascospores. *Phaeoseptum mali* has ascomata 348 × 327 μm and asci 140 × 25 μm, while *P. terricola* has ascomata 172 × 184 μm and asci 79 × 16 μm which are smaller in size than *P. mali* (Hyde et al. 2018). Based on morphology, *P. mali* is more similar to *P.
aquaticum, but the latter species has an ascomatal size of 300–400 × 400–600 μm which is larger than *P. mali* (Zhang et al. 2013). In addition, *P. aquaticum* has been reported from submerged material from freshwater habitat while *P. mali* was collected from terrestrial habitats (Zhang et al. 2013). In a BLASTn search on NCBI GenBank, the closest matches to sequences of our isolate (MFLUCC 17–2108) is *P. terricola* strain MFLUCC 10–0102. The ITS sequence is 90% similar (11.6 % nucleotide differences in the ITS regions) while the *rpb2* sequence is 96% similar (4 % nucleotide differences in the *rpb2* regions). Phylogenetic trees obtained from Bayesian analysis and maximum likelihood analysis were similar in overall topology at the family level as previously reported (Ariyawansa et al. 2015, Phukhamsakda et al. 2016, Hyde et al. 2018), except for *Neolophiostoma pigmentatum* (MFLUCC 10–0129) and *Brunneoclavispora bambusae* (MFLUCC 11–0177), which are now classified as incertae sedis. Therefore, our new strain is introduced as a new species of *Phaeoseptum* based on guidelines proposed by Jeewon & Hyde (2016).

Phylogeny recovered herein also indicates a different placement of *Neolophiostoma pigmentatum* Boonmee & K.D. Hyde. Based on multigene phylogenetic analyses, *N. pigmentatum* was originally referred to the Halotthiaeae (Ariyawansa et al. 2015, Wijayawardene et al. 2018), while, Hyde et al. (2018) transferred it to Phaeoseptaceae. In our phylogeny, *N. pigmentatum* formed a lineage separated from both Halotthiaeae and Phaeoseptaceae. This topological difference may be because of a highly variable gene region such as ITS which was analysed with increased taxon sampling. Another peculiar phylogenetic finding in this study is the placement of *Thyridaria macrostomoides*, which is similar to *Lignosphaeria* in having phragmosporous, elongate, cylindrical to fusiform and hyaline ascospores. However, the type specimen of *Thyridaria* (*T. broussonetiae* (Sacc.) Traverso) is in a distinct lineage in Thyridariaceae (Jaklitsch & Voglmayr 2016). To clarify the familial placement, the material needs to be re-examined (Abdel-Wahab & Jones 2003, Mugambi & Huhndorf 2009).

Acknowledgements

The authors would like to thank the Royal Golden Jubilee PhD Program under Thailand Research Fund (RGJ) for a personal grant to C. Phukhamsakda (Scholarship no. PHD/0020/2557 to study towards a PhD). Dr. Shaun Pennycook kindly checked and suggested Latin name for the new taxon. R. Jeewon thanks University of Mauritius for research support.

References

Abdel-Wahab MA, Jones EB. 2003 – *Decaisnella formosa* sp. nov. (Ascomycota, Massariaceae) from an Australian sandy beach. Canadian Journal of Botany 81, 598–600.

Mycosphere 9, 271–430.

Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A et al. 2017 – Fungal diversity notes 603–708:
taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87, 1–235.

(accessed February 2019).

Jaklitsch WM, Voglmayr H. 2016 – Hidden diversity in Thyridaria and a new circumscription of
the Thyridariaceae. Mycology 85, 35–64.

names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.

Jeewon R, Hyde KD. 2016 – Establishing species boundaries and new taxa among fungi:
recommendations to resolve taxonomic ambiguities. Mycosphere 7: 1669–1677.

Katoh K, Standley K. 2013 – MAFFT multiple sequence alignment software version 7:

Kodsueb R, Vijaykrishna D, Aptroot A, Lumyong S et al. 2006 – The family Pleosporaceae:
tergeneric relationships and phylogenetic perspectives based on sequence analyses of
partial 28S rDNA. Mycologia 98, 571–583.

Larsson A. 2014 – AliView: a fast and lightweight alignment viewer and editor for large data sets.
Bioinformatics 30, 3276–3278.

Liu AR, Chen SC, Wu SY, Xu T et al. 2010 – Cultural studies coupled with DNA based
sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis

times: a case study in Dothideomycetes. Fungal Diversity 84, 75–99.

of Nanjing Forestry University 28, 101–106.

Miller MA, Pfeiffer W, Schwartz T. 2010 – Creating the CIPRES Science Gateway for inference of
large phylogenetic trees. In Gateway Computing Environments Workshop 2010 (GCE), New

Mugambi GK, Huhndorf SM. 2009 – Molecular phylogenetics of Pleosporales: Melanommataceae
and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes,
Ascomycota). Studies in Mycology 64, 103–121.

Sporormiaceae: introducing two novel genera, Sparticola and Forliomyces, from Spartium.
Cryptogamie Mycologie 37, 75–98.

Pinnoi A, Jeewon R, Sakayaroj J, Hyde KD et al. 2007 – Berkleasmium crunisia sp. nov. and its
teleorphic affinities to the Pleosporales based on 18S, 28S and ITS-5.8S rDNA sequence analyses.

Rambaut A, Drummond A. 2008 – FigTree: tree figure drawing tool, version 12 2 Institute of
Evolutionary Biology, University of Edinburgh.

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014 – Tracer v16, available from

Rhodes L, Maxted N. 2016 – Malus halliana. The IUCN Red List of Threatened Species
Downloaded on 5 March 2019.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL et al. 2012 – MrBayes 3.2: efficient Bayesian
phylogenetic inference and model choice across a large model space. Systematic Biology 61,
539–542.

Stamatakis A, Hoover P, Bougmont J. 2008 – A rapid bootstrap algorithm for the RAxML web
servers. Systematic Biology 57, 758–771.

Stamatakis A. 2006 – RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with

Thambugala KM, Hyde KD, Tanaka K, Tian Q et al. 2015 – Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74, 199–266.

Appendix 1
GenBank accession numbers used in this study. GenBank accessions marked in bold represent new sequences generated in the current study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Culture collection</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSU</td>
</tr>
<tr>
<td>Aigialus grandis</td>
<td>BCC 20000</td>
<td>GU479775</td>
</tr>
<tr>
<td>morosis littoralis</td>
<td>NN 6654</td>
<td>AM292055</td>
</tr>
<tr>
<td>Angustimassarina acerina</td>
<td>MFLUCC 14−0505</td>
<td>KP888637</td>
</tr>
<tr>
<td>Angustimassarina arezzoensis</td>
<td>MFLUCC 13−0578</td>
<td>KY496722</td>
</tr>
<tr>
<td>Angustimassarina populi</td>
<td>MFLUCC 13−0034</td>
<td>KP888642</td>
</tr>
<tr>
<td>Berkleasmium crunisia</td>
<td>BCC 17023</td>
<td>DQ280271</td>
</tr>
<tr>
<td>Berkleasmium typhae</td>
<td>BCC 12436</td>
<td>DQ280275</td>
</tr>
<tr>
<td>Brunneoclavispora bambusae</td>
<td>MFLUCC 11−0177</td>
<td>KT426562</td>
</tr>
<tr>
<td>Crassiclypeus aquaticus</td>
<td>CBS 143639</td>
<td>LC312526</td>
</tr>
<tr>
<td>Decaisnella formosa</td>
<td>BCC 25617</td>
<td>GQ925847</td>
</tr>
<tr>
<td>Decaisnella formosa</td>
<td>BCC 25616</td>
<td>GQ925846</td>
</tr>
<tr>
<td>Exosporium stylobatum</td>
<td>CBS 160 30</td>
<td>JQ044447</td>
</tr>
<tr>
<td>Floricola striata</td>
<td>JK 5678I</td>
<td>GU301813</td>
</tr>
<tr>
<td>Guttulipsora crataegi</td>
<td>MFLUCC 13−0442</td>
<td>NG_059563</td>
</tr>
<tr>
<td>Halothoia posidoniae</td>
<td>BBH 22481</td>
<td>GU479786</td>
</tr>
<tr>
<td>Lignosphaeria fusispora</td>
<td>MFLUCC 11−0377</td>
<td>KP888646</td>
</tr>
<tr>
<td>Lignosphaeria thailandica</td>
<td>MFLUCC 11−0376</td>
<td>KP888645</td>
</tr>
<tr>
<td>Lophiostoma macrostomum</td>
<td>HHUF 27290</td>
<td>AB433273</td>
</tr>
<tr>
<td>Mauritiana rhizophorae</td>
<td>BCC 28867</td>
<td>GU371825</td>
</tr>
<tr>
<td>Mauritiana rhizophorae</td>
<td>BCC 28866</td>
<td>GU371824</td>
</tr>
<tr>
<td>Neoastropheliae spinospora</td>
<td>MFLUCC 11−0025</td>
<td>JN846729</td>
</tr>
<tr>
<td>Neoastropheliae spinospora</td>
<td>MFLUCC 10−0129</td>
<td>KT324588</td>
</tr>
<tr>
<td>Phaeoseptum aquaticum</td>
<td>CBS 123112</td>
<td>JN644072</td>
</tr>
<tr>
<td>Phaeoseptum mali</td>
<td>MFLUCC 17−2108</td>
<td>MK625197</td>
</tr>
<tr>
<td>Phaeoseptum terricola</td>
<td>MFLUCC 10−0102</td>
<td>MH105779</td>
</tr>
<tr>
<td>Pontoporeia biturbinata</td>
<td>BBH 23338</td>
<td>GU479796</td>
</tr>
<tr>
<td>Preussia lignicola</td>
<td>CBS 363.69</td>
<td>DQ384098</td>
</tr>
<tr>
<td>Preussia funiculata</td>
<td>CBS 659 74</td>
<td>GU301864</td>
</tr>
<tr>
<td>Ramusculicola thailandica</td>
<td>MFLUCC 13−0284</td>
<td>KP888647</td>
</tr>
<tr>
<td>Sigarisporea ravennica</td>
<td>MFLUCC 14−0005</td>
<td>KP698414</td>
</tr>
<tr>
<td>Sporormia fimetaria</td>
<td>UPS: Dissing Gr. 81.194</td>
<td>GQ203729</td>
</tr>
</tbody>
</table>
Appendix 1 Continued.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Culture collection</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LSU</td>
</tr>
<tr>
<td>Sporormiella minima</td>
<td>CBS 524.50</td>
<td>MH868263</td>
</tr>
<tr>
<td>Sulcosporium thailandica</td>
<td>MFLUCC 12−0004</td>
<td>KT426563</td>
</tr>
<tr>
<td>Teichospora rubriostiolata</td>
<td>MFLU 16−1247</td>
<td>MG829086</td>
</tr>
<tr>
<td>Teichospora trabicola</td>
<td>C134</td>
<td>KU601591</td>
</tr>
<tr>
<td>Thyridaria macrostomoides</td>
<td>GKM 1033</td>
<td>GU385190</td>
</tr>
<tr>
<td>Thyridaria macrostomoides</td>
<td>GKM 1159</td>
<td>GU385185</td>
</tr>
<tr>
<td>Westerdykella ornata</td>
<td>CBS 379.55</td>
<td>NG_057861</td>
</tr>
</tbody>
</table>